The norm map on Jacobians
نویسندگان
چکیده
منابع مشابه
Compactified Jacobians and Torelli Map
We compare several constructions of compactified jacobians using semistable sheaves, semistable projective curves, degenerations of abelian varieties, and combinatorics of cell decompositions and show that they are equivalent. We give a detailed description of the ”canonical compactified jacobian” in degree g − 1. Finally, we explain how Kapranov’s compactification of configuration spaces can b...
متن کاملNorm Dependence of the Coefficient Map on the Window Size1
For sparse exponent sequences (k) 1 ?1 , satisfying a suitablèseparation condition' deened by an auxiliary sequence , one has a `coeecient map' C giving (c k) 1 ?1 =: c from observation of f = P 1 k=?1 c k e ii k t on any arbitrarily small interval ?; ]. In terms of , we estimate the norm of C : L 2 ?; ] ! ` 2 , asymptotically as ! 0. In particular, for (k) 1 ?1 k p (p > 1) we get a bound which...
متن کاملOn maps between modular Jacobians and Jacobians of Shimura curves
Fix a squarefree integer N , divisible by an even number of primes, and let Γ be a congruence subgroup of level M , where M is prime to N . For each D dividing N and divisible by an even number of primes, the Shimura curve X(Γ0(N/D)∩Γ ) associated to the indefinite quaternion algebra of discriminant D and Γ0(N/D) ∩ Γ -level structure is well defined, and we can consider its Jacobian J(Γ0(N/D) ∩...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولGradient Flow of the Norm Squared of a Moment Map
We present a proof due to Duistermaat that the gradient flow of the norm squared of the moment map defines a deformation retract of the appropriate piece of the manifold onto the zero level set of the moment map. Duistermaat’s proof is an adaptation of Lojasiewicz’s argument for analytic functions to functions which are locally analytic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1983
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1983-0677222-8